Principal Advisor: Associate Professor Michael Piper


Research group: Piper Group - Neural stem cells in development and disease

Organisational unit: School of Biomedical Sciences

What are the mechanisms that control neural stem cell (NSC) differentiation during embryogenesis, and that enable the generation of the diverse suite of neurons and glia that comprise the brain? This is a key question in developmental neuroscience. My contribution to this field to date has been to reveal central transcriptional regulators that mediate NSC biology within the brain. Using rodent model systems, I demonstrated that transcription factors of the Nuclear Factor One (NFI) family mediate NSC proliferation and differentiation in the embryonic, postnatal and adult nervous system. This work has received international recognition, as evidenced by numerous invited international presentations and high-impact reviews (e.g. Trends in Cell Biology), and forms the framework around which the hypotheses of this program will be addressed. I am interested in defining how NSC proliferation and differentiation is regulated at a transcriptional and epigenomic level within the developing nervous system. Using the developing mouse brain as a model system, we are using a suite of molecular and cellular techniques to understand how diverse regions of the nervous system are generated, including the cerebral cortex, the cerebellum, the spinal cord and the hypothalamus. For example, within the cerebral cortex, we are investigating how the NFI family of transcription factors mediate NSC differentiation, and how mutations to the NFI family culminate in macrocephaly, and disorders such as Malan syndrome. Moreover, we are using mice lacking the gene Nsd1 (a histone modifying protein) to investigate the development of a human syndrome known as Sotos syndrome, which is also characterised by macrocephaly. In collaboration with Mikael Boden (SCMB), we are also investigating how changes to chromatin landscapes mediate NSC differentiation, and developing bioinformatic tools to enhance the analysis of RNA-seq and ChIP-seq datasets. Collectively, this work will provide fundamental insights into neural development, as well as insights into human neurodevelopmental disorders that arise as a result of abnormal neural stem cell biology in utero.